
mattdaemon Documentation
Release 1.1.1

plausibility

January 10, 2017

Contents

1 Documentation 3
1.1 Usage . 3
1.2 Automated Documentation . 7

i

ii

mattdaemon Documentation, Release 1.1.1

mattdaemon is a simple and effective way to daemonize any and all Python scripts you have.

Contents 1

mattdaemon Documentation, Release 1.1.1

2 Contents

CHAPTER 1

Documentation

1.1 Usage

1.1.1 Install & setup

What’s the point in an awesome module (which this is!) if you can’t use it? Nothing, that’s what!

mattdaemon is on pypi, so you just have to pip install mattdaemon, and you’re good to import
mattdaemon.

Setup

mattdaemon is fairly simple to setup, all you have to do is subclass the mattdaemon.daemon class, and override
the mattdaemon.daemon.run() method.

Here is how you’d make a simple daemon instance.

import mattdaemon

class MyDaemon(mattdaemon.daemon):
def run(self, *args, **kwargs):

... do something ...

/tmp/my-daemon.pid is our PID file.
daem = MyDaemon("/tmp/my-daemon.pid")

1.1.2 Working with the daemon

Note: In these examples, daem refers to the instance of the MyDaemon class, demonstrated above.

Note: Most of these are fairly simple to grasp; there isn’t a dying need to document them, it’s just nice to have.

start

Use this to start and daemonize your app.

3

https://pypi.python.org/pypi/mattdaemon

mattdaemon Documentation, Release 1.1.1

daem.start()

stop

if daem.status():
daem.stop()

restart

Note: This literally just calls mattdaemon.daemon.stop() and mattdaemon.daemon.start(), in that
order.

if daem.status():
daem.restart()

status

This will return a True or False value based on whether or not the daemon process is currently running.

if daem.status():
print 'daemon currently running!'

else:
print 'daemon not running!'

run

Note: You don’t actually call this; it’s called by the mattdaemon.daemon.start() method.

Warning: If you don’t add the *args and **kwargs variables to the function, all sorts of hell might break
loose.

This is the method you override to get your daemon calling what you want it to call.

import mattdaemon

class MyDaemon(mattdaemon.daemon):
def run(self, *args, **kwargs):

...

1.1.3 Daemonizing your app

Note: These are just some good ideas to keep in mind when creating your app with mattdaemon.

4 Chapter 1. Documentation

mattdaemon Documentation, Release 1.1.1

We don’t need no daemonization

Changed in version 1.1.0.

Note: Previous to 1.1.0, you just pass daemonize=False to mattdaemon.daemon.start() if you don’t
want to daemonize. This was changed to make it easier to pass through variables.

If you’d like to debug your app, you’ll have to stop the daemonization from happening temporarily. If you’d like to do
that, you can simply pass daemonize=False through to the creation of your daemon instance, like so:

daem = MyDaemon("/tmp/my-daemon.pid", daemonize=False, **kw)

Pass through variables

New in version 1.1.0.

Note: This makes use of the argument lists you can use in Python. If you know how many args are passed in, you can
simply expand the *args into variables.

If you want to pass through variables from the creation of your daemon to the mattdaemon.daemon.run()
method, you can easily do so by passing them into mattdaemon.daemon.start()!

For example, say we want to pass some settings in from sys.argv:

#...
class MyDaemon(mattdaemon.daemon):

def run(self, *args, **kwargs):
for count, thing in enumerate(args):

print '{0}. {1}'.format(count, thing)

for k, v in kwargs.items():
print '{0} = {1}'.format(k, v)

#...
daem.start(sys.argv[0], sys.argv[1], foo=sys.argv[2], bar=sys.argv[3])

If we call the script like this: python example.py gibson tree 50, we’ll get the output:

$ python example.py gibson tree 50
0. example.py
1. gibson
foo = tree
bar = 50

There is no std*

Why would there be? Your daemon will be running in the background. If you need the user to enter information,
perhaps in a loop, you’ll have to look for other ways of doing that.

By default, sys.stdin, sys.stdout and sys.stderr are all redirected to /dev/null, since they’re useless
in a deamonized app.

What does this mean? If you want to log anything, you’ll need to use a dedicated logger, or provide a log file to your
daemon instance (example below).

1.1. Usage 5

http://docs.python.org/2/tutorial/controlflow.html#arbitrary-argument-lists

mattdaemon Documentation, Release 1.1.1

kw = {
"pidfile": "/tmp/my-daemon.pid",
"stdin": "/dev/null", # since we don't need it
"stdout": "/tmp/my-daemon.log",
"stderr": "/tmp/my-daemon.log"

}
daem = MyDaemon(**kw)
daem.start(), whathaveyou

Don’t assume your working dir

Due to how daemonization works, the working directory is changed to /, the root of the file system. Because of this,
you can’t assume any required files are relative, since they might not be.

Relative, bad!
with open('relative/file', 'rb') as f:

...

Absolute, good!
with open('/some/absolute/file', 'rb') as f:

...

To root or not to root

Note: The default for the root check is False; as in, no, we don’t require root.

mattdaemon understands you, as well as your app. Careless users often run things with a higher privilege than they
need. Do you need root to write some files to temp, or serve data on a high port? Nope. Do people do it anyway?
They sure do!

Due to this, there is a built in root check. You can either tell the user that they do require root, or that they don’t
(which, to be fair, you should be aiming for anyway). Why yes or no? If you don’t need root, you shouldn’t allow it.
If you do need root, you should require it, since it will be needed at one point or another.

Root checks are simple, and can be controlled like such (with the root keyword):

Yes, we need root!
daem = MyDaemon("/tmp/my-daemon.pid", root=True)

By default, the check also requires --requires-root to be in the arguments passed, so that the user acknowledges
the use of root. This might not be what you want, so you can easily disable that, with the root_chk_argv keyword.

Yes, we need root!
No, we don't care about --requires-root
daem = MyDaemon("/tmp/my-daemon.pid", root=True, root_chk_argv=False)

Handling SIGTERM

Warning: This only works in POSIX compliant operating systems, since it uses signals, and Windows doesn’t.

If you do anything with resources, be it an open port, file, network request, you should handle SIGTERM.

6 Chapter 1. Documentation

mattdaemon Documentation, Release 1.1.1

import signal

def my_handler(signum, frame):
print 'Received signal', signum, 'cleaning up resources to exit'
my_resource.close()
my_socket.close()
print 'done..'

Register the handler.
signal.signal(signal.SIGTERM, my_handler)

1.2 Automated Documentation

This documentation is automatically built from the latest version of chr, located at the git repo.

class mattdaemon.daemon(pidfile, daemonize=True, root=False, root_chk_argv=True, stdin=’/dev/null’,
stdout=’/dev/null’, stderr=’/dev/null’)

A generic daemon class.

Usage: subclass the Daemon class and override the run() method

__init__(pidfile, daemonize=True, root=False, root_chk_argv=True, stdin=’/dev/null’, std-
out=’/dev/null’, stderr=’/dev/null’)

Make our daemon instance. pidfile: the file we’re going to store the process id in. ex: /tmp/matt-
daemon.pid root: does this script require root? True if it does, False if it doesn’t. Will be enforced.
root_chk_argv: does the script require ‘–requires-root’ in sys.argv to run as root? (usage is good) stdin:
where the script gets stdin from. “/dev/null”, “/dev/stdin”, etc. stdout: where the script writes stdout.
“/dev/null”, “/dev/stdout”, etc. stderr: where the script writes stderr. “/dev/null”, “/dev/stderr”, etc.

daemonize()
do the UNIX double-fork magic, see Stevens’ “Advanced Programming in the UNIX Environment” for
details (ISBN 0201563177) http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16

restart()
Restart the daemon

run(*args, **kwargs)
You should override this method when you subclass Daemon. It will be called after the process has been
daemonized by start() or restart().

start(*args, **kwargs)
Start the daemon

status()
Check if the daemon is currently running. Requires procfs, so it will only work on POSIX compliant OS’.

stop()
Stop the daemon

1.2. Automated Documentation 7

https://github.com/plausibility/chr
http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16

mattdaemon Documentation, Release 1.1.1

8 Chapter 1. Documentation

Index

Symbols
__init__() (mattdaemon.daemon method), 7

D
daemon (class in mattdaemon), 7
daemonize() (mattdaemon.daemon method), 7

R
restart() (mattdaemon.daemon method), 7
run() (mattdaemon.daemon method), 7

S
start() (mattdaemon.daemon method), 7
status() (mattdaemon.daemon method), 7
stop() (mattdaemon.daemon method), 7

9

	Documentation
	Usage
	Automated Documentation

